Correlation-based imaging in random media

Josselin Garnier (Université Paris Diderot) http://www.proba.jussieu.fr/~garnier/

with George Papanicolaou (Stanford University), Knut Sølna (UC Irvine).

- Principle of sensor array imaging:
- probe an unknown medium with waves,
- record the waves transmitted through or reflected by the medium,

- process the recorded data to extract relevant information about some features of the medium.

Reflector imaging through a homogeneous medium

• Sensor array imaging of a reflector located at \vec{y} . \vec{x}_s is a source, \vec{x}_r is a receiver. Measured data: $\{u(t, \vec{x}_r; \vec{x}_s), r = 1, \dots, N_r, s = 1, \dots, N_s\}$.

• Mathematical model:

$$\left(\frac{1}{c_0^2} + \frac{1}{c_{\rm ref}^2} \mathbf{1}_{B_{\rm ref}}(\vec{\boldsymbol{x}} - \vec{\boldsymbol{y}})\right) \frac{\partial^2 u}{\partial t^2}(t, \vec{\boldsymbol{x}}; \vec{\boldsymbol{x}}_{\rm s}) - \Delta_{\vec{\boldsymbol{x}}} u(t, \vec{\boldsymbol{x}}; \vec{\boldsymbol{x}}_{\rm s}) = f(t)\delta(\vec{\boldsymbol{x}} - \vec{\boldsymbol{x}}_{\rm s})$$

• Purpose of imaging: using the measured data, build an imaging function $\mathcal{I}(\vec{y}^S)$ that would ideally look like $\frac{1}{c_{\text{ref}}^2} \mathbf{1}_{B_{\text{ref}}}(\vec{y}^S - \vec{y})$, in order to extract the relevant information $(\vec{y}, B_{\text{ref}}, c_{\text{ref}})$ about the reflector.

Edinburgh

• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and synthetic data obtained by solving the wave equation with a candidate $(\vec{y}_{\text{test}}, B_{\text{test}}, c_{\text{test}}).$

2) Reverse Time imaging: simplify Least-Squares imaging by "linearization" of the forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time migration for full wave equation.

• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and synthetic data obtained by solving the wave equation with a candidate $(\vec{y}_{\text{test}}, B_{\text{test}}, c_{\text{test}}).$

2) Reverse Time imaging: simplify Least-Squares imaging by "linearization" of the forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time migration for full wave equation.

• Kirchhoff Migration function:

$$\mathcal{I}_{\mathrm{KM}}(\vec{\boldsymbol{y}}^{S}) = \sum_{r=1}^{N_{\mathrm{r}}} \sum_{s=1}^{N_{\mathrm{s}}} u \big(\mathcal{T}(\vec{\boldsymbol{x}}_{s}, \vec{\boldsymbol{y}}^{S}) + \mathcal{T}(\vec{\boldsymbol{y}}^{S}, \vec{\boldsymbol{x}}_{r}), \vec{\boldsymbol{x}}_{r}; \vec{\boldsymbol{x}}_{s} \big)$$

It forms the image with the superposition of the backpropagated traces. $\mathcal{T}(\vec{y}^S, \vec{x})$ is the travel time from \vec{x} to \vec{y}^S , i.e. $\mathcal{T}(\vec{y}^S, \vec{x}) = |\vec{y}^S - \vec{x}|/c_0$.

- Very robust with respect to measurement noise [1].

- Sensitive to clutter noise (due to scattering medium): If the medium is scattering, then Kirchhoff Migration (usually) does not work.

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).

Reflector imaging through a scattering medium

• Sensor array imaging of a reflector located at \vec{y} . \vec{x}_s is a source, \vec{x}_r is a receiver. Data: $\{u(t, \vec{x}_r; \vec{x}_s), r = 1, \dots, N_r, s = 1, \dots, N_s\}.$

$$\left(\frac{1}{c^2(\vec{\boldsymbol{x}})} + \frac{1}{c_{\rm ref}^2} \mathbf{1}_{B_{\rm ref}}(\vec{\boldsymbol{x}} - \vec{\boldsymbol{y}})\right) \frac{\partial^2 u}{\partial t^2}(t, \vec{\boldsymbol{x}}; \vec{\boldsymbol{x}}_{\rm s}) - \Delta_{\vec{\boldsymbol{x}}} u(t, \vec{\boldsymbol{x}}; \vec{\boldsymbol{x}}_{\rm s}) = f(t)\delta(\vec{\boldsymbol{x}} - \vec{\boldsymbol{x}}_{\rm s})$$

• Random medium model:

 $\frac{1}{c^2(\vec{x})} = \frac{1}{c_0^2} (1 + \mu(\vec{x}))$

 c_0 is a reference speed,

 $\mu(\vec{x})$ is a zero-mean random process.

Edinburgh

Imaging through a randomly scattering medium: strategy

• A multiscale analysis is possible in different asymptotic regimes (small wavelength, large propagation distance, small correlation length, ...).

• In the limit the wave equation with random coefficients is replaced by a stochastic partial differential equation driven by Brownian fields; for instance, an Itô-Schrödinger equation in the paraxial regime.

• Stochastic calculus can then be used.

• Compute the mean and variance of an imaging function $\mathcal{I}(\vec{y}^S)$. \hookrightarrow resolution and stability analysis.

• The mean imaging function $\vec{y}^S \to \mathbb{E}[\mathcal{I}(\vec{y}^S)]$ characterizes the precision in the localization and characterization of the reflector (resolution).

• Criterium for statistical stability:

$$\mathrm{SNR} := \frac{\mathbb{E} \left[\mathcal{I}(\vec{\boldsymbol{y}}^S) \right]}{\mathrm{Var} \left(\mathcal{I}(\vec{\boldsymbol{y}}^S) \right)^{1/2}} > 1$$

 \hookrightarrow design the imaging function to get good trade-off between stability and resolution.

- General results obtained by a multiscale analysis.
- The mean wave is small while the wave fluctuations are large.

 \implies The Kirchhoff Migration function (or Reverse Time imaging function) is unstable in randomly scattering media.

• The wave fluctuations at nearby points and nearby frequencies are correlated. The wave correlations carry information about the medium.

 \implies One can use local cross correlations for imaging.

• More detailed results depend on the scattering regime.

• Consider the time-harmonic form of the scalar wave equation $(\vec{x} = (x, z))$

$$(\partial_z^2 + \Delta_\perp)\hat{u} + \frac{\omega^2}{c_0^2} (1 + \mu(\boldsymbol{x}, z))\hat{u} = 0.$$

Consider the paraxial regime " $\lambda \ll l_c \ll L$ ":

$$\omega \to \frac{\omega}{\varepsilon^4}, \qquad \mu(\boldsymbol{x}, z) \to \varepsilon^3 \mu(\frac{\boldsymbol{x}}{\varepsilon^2}, \frac{z}{\varepsilon^2}).$$

The function $\hat{\phi}^{\varepsilon}$ (slowly-varying envelope of a plane wave) defined by

$$\hat{u}^{\varepsilon}(\omega, \boldsymbol{x}, z) = e^{i\frac{\omega z}{\varepsilon^4 c_0}} \hat{\phi}^{\varepsilon}\left(\omega, \frac{\boldsymbol{x}}{\varepsilon^2}, z\right)$$

satisfies

$$\boldsymbol{\varepsilon}^{4}\partial_{z}^{2}\hat{\phi}^{\varepsilon} + \left(2i\frac{\omega}{c_{0}}\partial_{z}\hat{\phi}^{\varepsilon} + \Delta_{\perp}\hat{\phi}^{\varepsilon} + \frac{\omega^{2}}{c_{0}^{2}}\frac{1}{\varepsilon}\mu(\boldsymbol{x},\frac{z}{\varepsilon^{2}})\hat{\phi}^{\varepsilon}\right) = 0.$$

• Consider the time-harmonic form of the scalar wave equation $(\vec{x} = (x, z))$

$$(\partial_z^2 + \Delta_\perp)\hat{u} + \frac{\omega^2}{c_0^2} (1 + \mu(\boldsymbol{x}, z))\hat{u} = 0.$$

Consider the paraxial regime " $\lambda \ll l_c \ll L$ ":

$$\omega \to \frac{\omega}{\varepsilon^4}, \qquad \mu(\boldsymbol{x}, z) \to \varepsilon^3 \mu(\frac{\boldsymbol{x}}{\varepsilon^2}, \frac{z}{\varepsilon^2}).$$

The function $\hat{\phi}^{\varepsilon}$ (slowly-varying envelope of a plane wave) defined by

$$\hat{u}^{\varepsilon}(\omega, \boldsymbol{x}, z) = e^{i \frac{\omega z}{\varepsilon^4 c_0}} \hat{\phi}^{\varepsilon} \left(\omega, \frac{\boldsymbol{x}}{\varepsilon^2}, z\right)$$

satisfies

$$\varepsilon^4 \partial_z^2 \hat{\phi}^{\varepsilon} + \left(2i \frac{\omega}{c_0} \partial_z \hat{\phi}^{\varepsilon} + \Delta_\perp \hat{\phi}^{\varepsilon} + \frac{\omega^2}{c_0^2} \frac{1}{\varepsilon} \mu \left(\boldsymbol{x}, \frac{z}{\varepsilon^2} \right) \hat{\phi}^{\varepsilon} \right) = 0.$$

• In the regime $\varepsilon \ll 1$, the forward-scattering approximation in direction z is valid and $\hat{\phi} = \lim_{\varepsilon \to 0} \hat{\phi}^{\varepsilon}$ satisfies the Itô-Schrödinger equation [1]

$$2i\frac{\omega}{c_0}\partial_z\hat{\phi} + \Delta_{\perp}\hat{\phi} + \frac{\omega^2}{c_0^2}\dot{B}(\boldsymbol{x},z)\hat{\phi} = 0$$

with $B(\boldsymbol{x}, z)$ Brownian field $\mathbb{E}[B(\boldsymbol{x}, z)B(\boldsymbol{x}', z')] = \gamma(\boldsymbol{x} - \boldsymbol{x}') \min(z, z'),$ $\gamma(\boldsymbol{x}) = \int_{-\infty}^{\infty} \mathbb{E}[\mu(\boldsymbol{0}, 0)\mu(\boldsymbol{x}, z)]dz.$

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).

• Consider the time-harmonic form of the scalar wave equation $(\vec{x} = (x, z))$

$$(\partial_z^2 + \Delta_\perp)\hat{u} + \frac{\omega^2}{c_0^2} (1 + \mu(\boldsymbol{x}, z))\hat{u} = 0.$$

Consider the paraxial regime " $\lambda \ll l_c \ll L$ ":

$$\omega o rac{\omega}{arepsilon^4}, \qquad \mu({m x},z) o arepsilon^3 \muig(rac{{m x}}{arepsilon^2},rac{z}{arepsilon^2}ig).$$

The function $\hat{\phi}^{\varepsilon}$ (slowly-varying envelope of a plane wave) defined by

$$\hat{u}^{\varepsilon}(\omega, \boldsymbol{x}, z) = e^{i \frac{\omega z}{\varepsilon^4 c_0}} \hat{\phi}^{\varepsilon} \left(\omega, \frac{\boldsymbol{x}}{\varepsilon^2}, z\right)$$

satisfies

$$\varepsilon^4 \partial_z^2 \hat{\phi}^{\varepsilon} + \left(2i \frac{\omega}{c_0} \partial_z \hat{\phi}^{\varepsilon} + \Delta_\perp \hat{\phi}^{\varepsilon} + \frac{\omega^2}{c_0^2} \frac{1}{\varepsilon} \mu(\boldsymbol{x}, \frac{z}{\varepsilon^2}) \hat{\phi}^{\varepsilon} \right) = 0.$$

• In the regime $\varepsilon \ll 1$, the forward-scattering approximation in direction z is valid and $\hat{\phi} = \lim_{\varepsilon \to 0} \hat{\phi}^{\varepsilon}$ satisfies the Itô-Schrödinger equation [1]

$$d\hat{\phi} = \frac{ic_0}{2\omega} \Delta_{\perp} \hat{\phi} dz + \frac{i\omega}{2c_0} \hat{\phi} \circ dB(\boldsymbol{x}, z)$$

with $B(\boldsymbol{x}, z)$ Brownian field $\mathbb{E}[B(\boldsymbol{x}, z)B(\boldsymbol{x}', z')] = \gamma(\boldsymbol{x} - \boldsymbol{x}') \min(z, z'),$ $\gamma(\boldsymbol{x}) = \int_{-\infty}^{\infty} \mathbb{E}[\mu(\boldsymbol{0}, 0)\mu(\boldsymbol{x}, z)]dz.$

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).

• Consider the time-harmonic form of the scalar wave equation $(\vec{x} = (x, z))$

$$(\partial_z^2 + \Delta_\perp)\hat{u} + \frac{\omega^2}{c_0^2} (1 + \mu(\boldsymbol{x}, z))\hat{u} = 0.$$

Consider the paraxial regime " $\lambda \ll l_c \ll L$ ":

$$\omega \to \frac{\omega}{\varepsilon^4}, \qquad \mu(\boldsymbol{x}, z) \to \varepsilon^3 \mu(\frac{\boldsymbol{x}}{\varepsilon^2}, \frac{z}{\varepsilon^2}).$$

The function $\hat{\phi}^{\varepsilon}$ (slowly-varying envelope of a plane wave) defined by

$$\hat{u}^{\varepsilon}(\omega, \boldsymbol{x}, z) = e^{i \frac{\omega z}{\varepsilon^4 c_0}} \hat{\phi}^{\varepsilon} \left(\omega, \frac{\boldsymbol{x}}{\varepsilon^2}, z\right)$$

satisfies

$$\varepsilon^4 \partial_z^2 \hat{\phi}^{\varepsilon} + \left(2i \frac{\omega}{c_0} \partial_z \hat{\phi}^{\varepsilon} + \Delta_\perp \hat{\phi}^{\varepsilon} + \frac{\omega^2}{c_0^2} \frac{1}{\varepsilon} \mu(\boldsymbol{x}, \frac{z}{\varepsilon^2}) \hat{\phi}^{\varepsilon} \right) = 0.$$

• In the regime $\varepsilon \ll 1$, the forward-scattering approximation in direction z is valid and $\hat{\phi} = \lim_{\varepsilon \to 0} \hat{\phi}^{\varepsilon}$ satisfies the Itô-Schrödinger equation [1]

$$d\hat{\phi} = \frac{ic_0}{2\omega} \Delta_{\perp} \hat{\phi} dz + \frac{i\omega}{2c_0} \hat{\phi} dB(\boldsymbol{x}, z) - \frac{\omega^2 \gamma(\mathbf{0})}{8c_0^2} \hat{\phi} dz$$

with $B(\boldsymbol{x}, z)$ Brownian field $\mathbb{E}[B(\boldsymbol{x}, z)B(\boldsymbol{x}', z')] = \gamma(\boldsymbol{x} - \boldsymbol{x}') \min(z, z'),$ $\gamma(\boldsymbol{x}) = \int_{-\infty}^{\infty} \mathbb{E}[\mu(\boldsymbol{0}, 0)\mu(\boldsymbol{x}, z)]dz.$

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).

• We introduce the fundamental solution $\hat{G}(\omega, (\boldsymbol{x}, z), (\boldsymbol{x}_0, z_0))$:

$$d\hat{G} = \frac{ic_0}{2\omega} \Delta_{\perp} \hat{G} dz + \frac{i\omega}{2c_0} \hat{G} \circ dB(\boldsymbol{x}, z)$$

starting from $\hat{G}(\omega, (\boldsymbol{x}, z = z_0), (\boldsymbol{x}_0, z_0)) = \delta(\boldsymbol{x} - \boldsymbol{x}_0).$

• In a homogeneous medium $(B \equiv 0)$ the fundamental solution is

$$\hat{G}_0(\omega,(\boldsymbol{x},z),(\boldsymbol{x}_0,z_0)) = \frac{\exp\left(\frac{i\omega|\boldsymbol{x}-\boldsymbol{x}_0|^2}{2c_0|z-z_0|}\right)}{2i\pi c_0\frac{|z-z_0|}{\omega}}$$

• We introduce the fundamental solution $\hat{G}(\omega, (\boldsymbol{x}, z), (\boldsymbol{x}_0, z_0))$:

$$d\hat{G} = \frac{ic_0}{2\omega} \Delta_{\perp} \hat{G} dz + \frac{i\omega}{2c_0} \hat{G} \circ dB(\boldsymbol{x}, z)$$

starting from $\hat{G}(\omega, (\boldsymbol{x}, z = z_0), (\boldsymbol{x}_0, z_0)) = \delta(\boldsymbol{x} - \boldsymbol{x}_0).$

• In a homogeneous medium $(B \equiv 0)$ the fundamental solution is

$$\hat{G}_0(\omega,(\boldsymbol{x},z),(\boldsymbol{x}_0,z_0)) = \frac{\exp\left(\frac{i\omega|\boldsymbol{x}-\boldsymbol{x}_0|^2}{2c_0|z-z_0|}\right)}{2i\pi c_0\frac{|z-z_0|}{\omega}}$$

• In a random medium, by Itô's formula

$$\mathbb{E}\big[\hat{G}\big(\omega,(\boldsymbol{x},z),(\boldsymbol{x}_0,z_0)\big)\big] = \hat{G}_0\big(\omega,(\boldsymbol{x},z),(\boldsymbol{x}_0,z_0)\big)\exp\Big(-\frac{\gamma(\boldsymbol{0})\omega^2|z-z_0|}{8c_0^2}\Big),$$

where $\gamma(\boldsymbol{x}) = \int_{-\infty}^{\infty} \mathbb{E}[\mu(\boldsymbol{0}, 0)\mu(\boldsymbol{x}, z)]dz.$

• Strong damping of the mean wave.

 \implies Reverse Time imaging and Kirchhoff migration fail.

• In a random medium, by Itô's formula

$$egin{aligned} &\mathbb{E}ig[\hat{G}ig(\omega,(oldsymbol{x},z),(oldsymbol{x}_0,z_0)ig)\overline{\hat{G}ig(\omega,(oldsymbol{x}',z),(oldsymbol{x}_0,z_0)ig)}ig] \ &=\hat{G}_0ig(\omega,(oldsymbol{x},z),(oldsymbol{x}_0,z_0)ig)\overline{\hat{G}_0ig(\omega,(oldsymbol{x}',z),(oldsymbol{x}_0,z_0)ig)}\expig(-rac{\gamma_2(oldsymbol{x}-oldsymbol{x}')\omega^2|z-z_0|}{4c_0^2}ig), \end{aligned}$$

where $\gamma_2(\boldsymbol{x}) = \int_0^1 \gamma(\boldsymbol{0}) - \gamma(\boldsymbol{x}s) ds$ (note $\gamma_2(\boldsymbol{0}) = 0$).

- The fields at nearby points are correlated.
- Same results in frequency: The fields at nearby frequencies are correlated.
- \implies One should migrate local cross correlations for imaging.

• In a random medium, by Itô's formula

$$egin{aligned} &\mathbb{E}ig[\hat{G}ig(\omega,(oldsymbol{x},z),(oldsymbol{x}_0,z_0)ig)\overline{\hat{G}ig(\omega,(oldsymbol{x}',z),(oldsymbol{x}_0,z_0)ig)}ig] \ &=\hat{G}_0ig(\omega,(oldsymbol{x},z),(oldsymbol{x}_0,z_0)ig)\overline{\hat{G}_0ig(\omega,(oldsymbol{x}',z),(oldsymbol{x}_0,z_0)ig)}\expig(-rac{\gamma_2(oldsymbol{x}-oldsymbol{x}')\omega^2|z-z_0|}{4c_0^2}ig), \end{aligned}$$

where $\gamma_2(\boldsymbol{x}) = \int_0^1 \gamma(\boldsymbol{0}) - \gamma(\boldsymbol{x}s) ds$ (note $\gamma_2(\boldsymbol{0}) = 0$).

• The fields at nearby points are correlated.

- Same results in frequency: The fields at nearby frequencies are correlated.
- \implies One should migrate local cross correlations for imaging.

• In a random medium, by Itô's formula, one can write a closed-form equation for the *n*-th order moment.

Depending on the statistics of the random medium, the wave fluctuations may have Gaussian statistics or not [1].

[1] J. Garnier and K. Sølna, to appear in Comm. Part. Differ. Equat.

Application: Imaging below an "overburden"

Imaging below an "overburden" From van der Neut and Bakulin (2009)

Edinburgh

Imaging below an overburden

 \vec{y}

Array imaging of a reflector at \vec{y} . \vec{x}_s is a source, \vec{x}_r is a receiver. Data: $\{u(t, \vec{x}_r; \vec{x}_s), r = 1, \dots, N_r, s = 1, \dots, N_s\}.$

If the "overburden" is scattering, then Kirchhoff Migration does not work:

$$\mathcal{I}_{\mathrm{KM}}(\vec{\boldsymbol{y}}^{S}) = \sum_{r=1}^{N_{\mathrm{r}}} \sum_{s=1}^{N_{\mathrm{s}}} u \big(\mathcal{T}(\vec{\boldsymbol{x}}_{s}, \vec{\boldsymbol{y}}^{S}) + \mathcal{T}(\vec{\boldsymbol{y}}^{S}, \vec{\boldsymbol{x}}_{r}), \vec{\boldsymbol{x}}_{r}; \vec{\boldsymbol{x}}_{s} \big)$$

Numerical simulations

Computational setup

-1500 -1600 -1700 -1800 -1800 -1900 -2000 -2000 -2000 -2000 -2000 -2000 -2000 -100 0 100 200300

Image obtained with Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka)

Edinburgh

Imaging below an overburden

 \vec{y} .

 \vec{x}_s is a source, \vec{x}_r is a receiver. Data: $\{u(t, \vec{x}_r; \vec{x}_s), r = 1, \dots, N_r, s = 1, \dots, N_s\}$.

Image with Kirchhoff Migration of the cross correlation matrix:

$$\mathcal{I}(ec{oldsymbol{y}}^S) = \sum_{r,r'=1}^{N_{\mathrm{r}}} \mathcal{C}ig(\mathcal{T}(ec{oldsymbol{x}}_r, ec{oldsymbol{y}}^S) + \mathcal{T}(ec{oldsymbol{y}}^S, ec{oldsymbol{x}}_{r'}), ec{oldsymbol{x}}_r, ec{oldsymbol{x}}_{r'}ig),$$

with

$$C(\tau, \vec{x}_r, \vec{x}_{r'}) = \sum_{s=1}^{N_s} \int u(t, \vec{x}_r; \vec{x}_s) u(t + \tau, \vec{x}_{r'}; \vec{x}_s) dt , \qquad r, r' = 1, \dots, N_r$$

Edinburgh

Numerical simulations

Kirchhoff Migration

Cross Correlation Migration

Edinburgh

Analysis in randomly scattering media

Does the cross correlation imaging function give good images in scattering media ?
→ It is possible to analyze the resolution and stability of the imaging function in randomly scattering media:

- analysis in the random paraxial regime,
- analysis in the randomly layered regime,
- analysis in the radiative transfer regime.
- General results:

Imaging function is stable provided the bandwidth is large enough and/or the source array is large enough.

Resolution is essentially independent of the size of the source array.

• Detailed results: Clarify the role of scattering.

- in the random paraxial regime, scattering helps (it enhances the angular diversity of the illumination).

- in the randomly layered regime, scattering does not help (it reduces the angular diversity of the illumination).

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).

- Assume that:
- the source aperture is b and the receiver aperture is a.
- there is a point reflector at $\vec{y} = (y, -L_y)$.
- the covariance function $\gamma(\boldsymbol{x}) = \int \mathbb{E}[\mu(\boldsymbol{0}, 0)\mu(\boldsymbol{x}, z)]dz$ can be expanded as $\gamma(\boldsymbol{x}) = \gamma(\boldsymbol{0}) - \bar{\gamma}_2 |\boldsymbol{x}|^2 + o(|\boldsymbol{x}|^2)$ for small $|\boldsymbol{x}|$.
- scattering is strong: $\frac{\gamma(\mathbf{0})\omega_0^2 L}{c_0^2} > 1$ (\rightarrow mean wave is damped).

Homogeneous medium

Random medium

Effective source aperture:

$$b_{\text{eff}} = b$$
 $b_{\text{eff}} = \left(b^2 + \frac{\bar{\gamma}_2 L^3}{3}\right)^{1/2}$

Homogeneous medium

Random medium

Effective source aperture:

$$b_{\rm eff} = b$$
 $b_{\rm eff} = \left(b^2 + \frac{\bar{\gamma}_2 L^3}{3}\right)^{1/2}$

Effective receiver aperture:

$$a_{\text{eff}} = b \frac{L_y - L}{L_y} \qquad \qquad a_{\text{eff}} = b_{\text{eff}} \frac{L_y - L}{L_y}$$

Edinburgh

• The imaging function for the search point \vec{y}^S is

$$\mathcal{I}(\vec{\boldsymbol{y}}^S) = \frac{1}{N_r^2} \sum_{r,r'=1}^{N_r} \mathcal{C}\big(\mathcal{T}(\vec{\boldsymbol{x}}_r, \vec{\boldsymbol{y}}^S) + \mathcal{T}(\vec{\boldsymbol{y}}^S, \vec{\boldsymbol{x}}_{r'}), \vec{\boldsymbol{x}}_r, \vec{\boldsymbol{x}}_{r'}\big)$$

• The imaging function is statistically stable $(\lambda_0 \ll b \ll L)$.

• The lateral resolution is $\frac{\lambda_0(L_y - L)}{a_{\text{eff}}}$. The range resolution is $\frac{c_0}{B}$. Here: λ_0 is the carrier wavelength, B is the bandwidth.

- Since $a_{\text{eff}} \mid_{\text{rand}} > a_{\text{eff}} \mid_{\text{homo}}$, this shows that scattering helps.
- physical reason: scattering enhances the angular diversity of the illumination.
- effect already noticed for time-reversal experiments, in which the recorded waves are time-reversed and sent back in the real medium.

Randomly layered medium

• Random medium model $(\vec{x} = (x, z))$:

$$\frac{1}{c^2(\vec{x})} = \frac{1}{c_0^2} (1 + \mu(z))$$

 c_0 is a reference speed,

 $\mu(z)$ is a zero-mean random process.

• Consider the time-harmonic form of the scalar wave equation $(\vec{x} = (x, z))$

$$(\partial_z^2 + \Delta_\perp)\hat{u} + \frac{\omega^2}{c_0^2} (1 + \mu(z))\hat{u} = 0$$

Consider the scaled regime " $l_c \ll \lambda \ll L$ ":

$$\omega o rac{\omega}{arepsilon}, \qquad \mu(z) o \muigl(rac{z}{arepsilon^2}igr)$$

The moments of the random Green's function are known in the limit $\varepsilon \to 0$ [1].

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.

- Assume that:
- the source aperture is b and the receiver aperture is a.
- there is a point reflector at $\vec{y} = (y, -L_y)$.

- the localization length L_{loc} is smaller than L (strong scattering, mean wave is damped):

$$L_{\text{loc}} = \frac{4c_0^2}{\gamma\omega_0^2}, \qquad \gamma = \int_{-\infty}^{\infty} \mathbb{E}[\mu(0)\mu(z)]dz$$

Homogeneous medium

Randomly layered medium

Effective source aperture:

$$b_{\rm eff} = b \qquad \qquad b_{\rm eff}^2 = 4L_{\rm loc}L \ (\ll b^2)$$

Homogeneous medium

Randomly layered medium

Effective source aperture:

$$b_{\rm eff} = b \qquad \qquad b_{\rm eff}^2 = 4L_{\rm loc}L \ (\ll b^2)$$

Effective receiver aperture:

$$a_{\text{eff}} = b \frac{L_y - L}{L_y} \qquad \qquad a_{\text{eff}} = b_{\text{eff}} \frac{L_y - L}{L_y}$$

Edinburgh

• The imaging function for the search point \vec{y}^{S} is

$$\mathcal{I}(\vec{\boldsymbol{y}}^{S}) = \frac{1}{N_{\mathrm{r}}^{2}} \sum_{r,r'=1}^{N_{\mathrm{r}}} \mathcal{C}\big(\mathcal{T}(\vec{\boldsymbol{x}}_{r},\vec{\boldsymbol{y}}^{S}) + \mathcal{T}(\vec{\boldsymbol{y}}^{S},\vec{\boldsymbol{x}}_{r'}),\vec{\boldsymbol{x}}_{r},\vec{\boldsymbol{x}}_{r'}\big)$$

• The imaging function is statistically stable $(\lambda_0 \ll b, L)$.

• The lateral resolution is
$$\frac{\lambda_0(L_y - L)}{a_{\text{eff}}}$$
. The range resolution is $\frac{c_0}{B} \left(1 + \frac{B^2 L}{4\omega_0^2 L_{\text{loc}}}\right)^{1/2}$.

Since a_{eff} |_{rand} < a_{eff} |_{homo}, this shows that scattering does not help.
physical reason: scattering reduces the angular and frequency diversity of the illumination.

Further results

• Use of other imaging functions based on cross-correlations (or Wigner distribution functions).

• Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient noise sources (increasingly popular in geophysics, "seismic interferometry").

 \hookrightarrow Travel time tomography (surface wave tomography since 2005, body waves more recently).

 \hookrightarrow Volcano monitoring (early warning of the eruption of Le Piton de la Fournaise in october 2010).

 \hookrightarrow Passive reflector imaging.

• Use of higher-order correlations.

One can apply imaging techniques based on special fourth-order cross correlations. Useful when the statistics of the wave fluctuations is not Gaussian.

Edinburgh

Passive sensor imaging of a reflector

- Ambient noise sources (\circ) emit stationary random signals.
- The signals $(u(t, \vec{x}_r))_{r=1,...,N_r}$ are recorded by the receivers $(\vec{x}_r)_{r=1,...,N_r}$ (\blacktriangle).
- The cross correlation matrix is computed and migrated:

$$\mathcal{I}(\vec{\boldsymbol{y}}^{S}) = \sum_{r,r'=1}^{N_{r}} \mathcal{C}_{T} \big(\mathcal{T}(\vec{\boldsymbol{x}}_{r'}, \vec{\boldsymbol{y}}^{S}) + \mathcal{T}(\vec{\boldsymbol{x}}_{r}, \vec{\boldsymbol{y}}^{S}), \vec{\boldsymbol{x}}_{r}, \vec{\boldsymbol{x}}_{r'} \big)$$

with
$$\mathcal{C}_T(\tau, \vec{\boldsymbol{x}}_r, \vec{\boldsymbol{x}}_{r'}) = \frac{1}{T} \int_0^T u(t + \tau, \vec{\boldsymbol{x}}_{r'}) u(t, \vec{\boldsymbol{x}}_r) dt$$

Provided the ambient noise illumination is long (in time) and diversified (in angle and frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).

Conclusions

 \vec{y}

- In scattering media one should migrate *well chosen* cross correlations of data, not data themselves.
- Method can be applied with ambient noise sources instead of controlled sources.
- Scattering can help ! Already noticed for time-reversal experiments, but far from clear in imaging problems.

Edinburgh

Perspectives

• Space surveillance and imaging with airborne passive synthetic aperture arrays.

