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• Principle of sensor array imaging:

- probe an unknown medium with waves,

- record the waves transmitted through or reflected by the medium,

- process the recorded data to extract relevant information about some features of the

medium.
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Reflector imaging through a homogeneous medium

~xs ~xr

~y

• Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Measured data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

• Mathematical model:

( 1

c20
+

1

c2ref
1Bref

(~x− ~y)
)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Purpose of imaging: using the measured data, build an imaging function I(~yS) that

would ideally look like 1
c2
ref

1Bref
(~yS − ~y), in order to extract the relevant information

(~y, Bref , cref) about the reflector.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

(~ytest, Btest, ctest).

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

(~ytest, Btest, ctest).

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

• Kirchhoff Migration function:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)

It forms the image with the superposition of the backpropagated traces.

T (~yS , ~x) is the travel time from ~x to ~yS , i.e. T (~yS , ~x) = |~yS − ~x|/c0.

- Very robust with respect to measurement noise [1].

- Sensitive to clutter noise (due to scattering medium): If the medium is scattering,

then Kirchhoff Migration (usually) does not work.

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).



Reflector imaging through a scattering medium

~xs ~xr

~y

• Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

( 1

c2(~x)
+

1

c2ref
1Bref

(~x− ~y)
)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Random medium model:

1

c2(~x)
=

1

c20

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.
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Imaging through a randomly scattering medium: strategy

• A multiscale analysis is possible in different asymptotic regimes (small wavelength,

large propagation distance, small correlation length, . . .).

• In the limit the wave equation with random coefficients is replaced by a stochastic

partial differential equation driven by Brownian fields; for instance, an

Itô-Schrödinger equation in the paraxial regime.

• Stochastic calculus can then be used.

• Compute the mean and variance of an imaging function I(~yS).

→֒ resolution and stability analysis.

• The mean imaging function ~yS → E
[

I(~yS)
]

characterizes the precision in the

localization and characterization of the reflector (resolution).

• Criterium for statistical stability:

SNR :=
E
[

I(~yS)
]

Var
(

I(~yS)
)1/2

> 1

→֒ design the imaging function to get good trade-off between stability and resolution.
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• General results obtained by a multiscale analysis.

• The mean wave is small while the wave fluctuations are large.

=⇒ The Kirchhoff Migration function (or Reverse Time imaging function) is unstable

in randomly scattering media.

• The wave fluctuations at nearby points and nearby frequencies are correlated. The

wave correlations carry information about the medium.

=⇒ One can use local cross correlations for imaging.

• More detailed results depend on the scattering regime.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

2i
ω

c0
∂zφ̂+∆⊥φ̂+

ω2

c20
Ḃ(x, z)φ̂ = 0

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂dB(x, z)−

ω2γ(0)

8c20
φ̂dz

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.
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• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.

• In a random medium, by Itô’s formula

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

exp
(

−
γ(0)ω2|z − z0|

8c20

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

• Strong damping of the mean wave.

=⇒ Reverse Time imaging and Kirchhoff migration fail.
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• In a random medium, by Itô’s formula

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

−
γ2(x− x

′)ω2|z − z0|

4c20

)

,

where γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

• The fields at nearby points are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate local cross correlations for imaging.
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• In a random medium, by Itô’s formula

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

−
γ2(x− x

′)ω2|z − z0|

4c20

)

,

where γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

• The fields at nearby points are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate local cross correlations for imaging.

• In a random medium, by Itô’s formula, one can write a closed-form equation for the

n-th order moment.

Depending on the statistics of the random medium, the wave fluctuations may have

Gaussian statistics or not [1].

[1] J. Garnier and K. Sølna, to appear in Comm. Part. Differ. Equat.



Application: Imaging below an “overburden”

Imaging below an “overburden”

From van der Neut and Bakulin (2009)
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Imaging below an overburden

~xs

~xr

~y

Array imaging of a reflector at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the “overburden” is scattering, then Kirchhoff Migration does not work:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)
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Numerical simulations

Computational setup Image obtained with Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka)
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Imaging below an overburden

~xs

~xr

~y

~xs is a source, ~xr is a receiver. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

Image with Kirchhoff Migration of the cross correlation matrix:

I(~yS) =

Nr
∑

r,r′=1

C
(

T (~xr, ~y
S) + T (~yS , ~xr′), ~xr, ~xr′

)

,

with

C(τ, ~xr, ~xr′) =

Ns
∑

s=1

∫

u(t, ~xr; ~xs)u(t+ τ, ~xr′ ; ~xs)dt , r, r′ = 1, . . . , Nr
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Numerical simulations

Kirchhoff Migration Cross Correlation Migration
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Analysis in randomly scattering media

• Does the cross correlation imaging function give good images in scattering media ?

→֒ It is possible to analyze the resolution and stability of the imaging function in

randomly scattering media:

- analysis in the random paraxial regime,

- analysis in the randomly layered regime,

- analysis in the radiative transfer regime.

• General results:

Imaging function is stable provided the bandwidth is large enough and/or the source

array is large enough.

Resolution is essentially independent of the size of the source array.

• Detailed results: Clarify the role of scattering.

- in the random paraxial regime, scattering helps (it enhances the angular diversity of

the illumination).

- in the randomly layered regime, scattering does not help (it reduces the angular

diversity of the illumination).

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Imaging below an overburden: analysis in the paraxial regime

−Ly

−L

0
z x~xs

~xr

~y

• Assume that:

- the source aperture is b and the receiver aperture is a.

- there is a point reflector at ~y = (y,−Ly).

- the covariance function γ(x) =
∫

E[µ(0, 0)µ(x, z)]dz can be expanded as

γ(x) = γ(0)− γ̄2|x|
2 + o(|x|2) for small |x|.

- scattering is strong:
γ(0)ω2

0
L

c2
0

> 1 (→ mean wave is damped).
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Imaging below an overburden: analysis in the paraxial regime

b
bef f

L

b
bef f

L

Homogeneous medium Random medium

Effective source aperture:

beff = b beff =
(

b2 +
γ̄2L

3

3

)1/2
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Imaging below an overburden: analysis in the paraxial regime

a
aef f

b
bef f

Ly − L

L
a

aef f

b
bef f

Ly − L

L

Homogeneous medium Random medium

Effective source aperture:

beff = b beff =
(

b2 +
γ̄2L

3

3

)1/2

Effective receiver aperture:

aeff = b
Ly − L

Ly
aeff = beff

Ly − L

Ly
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Imaging below an overburden: analysis in the paraxial regime

• The imaging function for the search point ~yS is

I(~yS) =
1

N2
r

Nr
∑

r,r′=1

C
(

T (~xr, ~y
S) + T (~yS , ~xr′), ~xr, ~xr′

)

• The imaging function is statistically stable (λ0 ≪ b ≪ L).

• The lateral resolution is
λ0(Ly − L)

aeff
. The range resolution is

c0
B

.

Here: λ0 is the carrier wavelength, B is the bandwidth.

• Since aeff |rand> aeff |homo, this shows that scattering helps.

- physical reason: scattering enhances the angular diversity of the illumination.

- effect already noticed for time-reversal experiments, in which the recorded waves are

time-reversed and sent back in the real medium.
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Randomly layered medium

• Random medium model (~x = (x, z)):

1

c2(~x)
=

1

c20

(

1 + µ(z)
)

c0 is a reference speed,

µ(z) is a zero-mean random process.

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(z)
)

û = 0

Consider the scaled regime “lc ≪ λ ≪ L”:

ω →
ω

ε
, µ(z) → µ

( z

ε2
)

The moments of the random Green’s function are known in the limit ε → 0 [1].

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



Imaging below an overburden: analysis in the layered regime

−Ly

−L

0
z x~xs

~xr

~y

• Assume that:

- the source aperture is b and the receiver aperture is a.

- there is a point reflector at ~y = (y,−Ly).

- the localization length Lloc is smaller than L (strong scattering, mean wave is

damped):

Lloc =
4c20
γω2

0

, γ =

∫ ∞

−∞

E[µ(0)µ(z)]dz
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Imaging below an overburden: analysis in the layered regime

b
bef f

L

b
bef f

L

Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL (≪ b2)
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Imaging below an overburden: analysis in the layered regime
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b
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Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL (≪ b2)

Effective receiver aperture:

aeff = b
Ly − L

Ly
aeff = beff

Ly − L

Ly
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Imaging below an overburden: analysis in the layered regime

• The imaging function for the search point ~yS is

I(~yS) =
1

N2
r

Nr
∑

r,r′=1

C
(

T (~xr, ~y
S) + T (~yS , ~xr′), ~xr, ~xr′

)

• The imaging function is statistically stable (λ0 ≪ b, L).

• The lateral resolution is
λ0(Ly − L)

aeff
. The range resolution is

c0
B

(

1 +
B2L

4ω2
0Lloc

)1/2
.

• Since aeff |rand< aeff |homo, this shows that scattering does not help.

- physical reason: scattering reduces the angular and frequency diversity of the

illumination.
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Further results

• Use of other imaging functions based on cross-correlations (or Wigner distribution

functions).

• Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient

noise sources (increasingly popular in geophysics, “seismic interferometry”).

→֒ Travel time tomography (surface wave tomography since 2005, body waves more

recently).

→֒ Volcano monitoring (early warning of the eruption of Le Piton de la Fournaise in

october 2010).

→֒ Passive reflector imaging.

• Use of higher-order correlations.

One can apply imaging techniques based on special fourth-order cross correlations.

Useful when the statistics of the wave fluctuations is not Gaussian.
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Passive sensor imaging of a reflector

• Ambient noise sources (◦) emit stationary random signals.

• The signals (u(t, ~xr))r=1,...,Nr
are recorded by the receivers (~xr)r=1,...,Nr

(N).

• The cross correlation matrix is computed and migrated:

I(~yS) =

Nr
∑

r,r′=1

CT

(

T (~xr′ , ~y
S) + T (~xr, ~y

S), ~xr, ~xr′
)

with CT (τ, ~xr, ~xr′) =
1

T

∫ T

0

u(t+ τ, ~xr′)u(t, ~xr)dt

0 50 100
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1

Provided the ambient noise illumination is long (in time) and diversified (in angle and

frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



Conclusions

~xs

~xr

~y

• In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

• Method can be applied with ambient noise sources instead of controlled sources.

• Scattering can help ! Already noticed for time-reversal experiments, but far from

clear in imaging problems.
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Perspectives

• Space surveillance and imaging with airborne passive synthetic aperture arrays.

≈15km

≈100-1000km

Object
To Be
Imaged

Passive
Array
Platform

Active
Transmitters

Turbulent
Atmosphere
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